
Detecting and
Debugging Flaky Tests

Prof Jonathan Bell (http://jonbell.net/) 
George Mason University, USA
bellj@gmu.edu
@_jon_bell_

http://jonbell.net/
mailto:bellj@gmu.edu

@_jon_bell_SAST April 9, 2018

Testing Dominates Build Times

2%8%

90%

Projects taking > 1 hour to build on GitHub using Maven

Testing

OtherCompiling

@_jon_bell_SAST April 9, 2018

Flaky Tests

Test 1 Test 2 Test 3 Test 4Test 1 Test 2 Test 4Test 3Test 3Test 3Test 3Test 3Test 3Test 3Test 3

@_jon_bell_SAST April 9, 2018

Flaky Tests Fail Builds
4%

4%

83%

10%

Passed

Failed (Tests)Failed (Other)
Errored

8,432 builds of 201 Java Projects on Travis CI
[Beller, Gousios and Zaidman ‘15]

@_jon_bell_SAST April 9, 2018

Flaky Tests
• Test might pass or fail given the SAME code

• Google: 16% of tests are “flaky” in some way

• How do you handle these flaky tests?

• Typical fix: if you think something is flaky, run it
again and again - outcome is only decided from
the complete status

@_jon_bell_SAST April 9, 2018

Flaky Tests

Test 3

Test 3

Test 3

Test 3

Test 3

Test 3

Test 3Test 3 Test 3

“Test is OK!”

“Test failed!”

“Test outcome is
unknown!”

@_jon_bell_SAST April 9, 2018

Proactively Detecting Flaky
Tests

• If we can identify which tests are likely to be flaky,
then we can alert developers

• The best flaky test is the one that you find before it
ever fails!

• How do we find flaky tests, before they fail?

• Many different causes of flaky tests, one cause we
investigated in this work: test order dependencies

Practical Test
Dependency Detection

Alessio Gambi, Jonathan Bell, Andreas Zeller
Passau University, George Mason University, Saarland University

[ICST 2018, talk tomorrow at 11:00am, Research Track 1]

Fork me on Github

@_jon_bell_SAST April 9, 2018

Test Dependencies

Test 1 Test 2 Test 3 Test 4Test 1 Test 2

Shared
File

Value: A
Write, Value “A”

Test 4

Read
Write, Value “B”

Value: B

Test 3

Read

@_jon_bell_SAST April 9, 2018

Test Dependencies

Test 1 Test 2 Test 3Test 4Test 1 Test 2 Test 3

Shared
File

Value: A
Write, Value “A”

Test 4

Write, Value “B”

Read, Expect Value “A”

Value: B

A manifest test dependency

Read

@_jon_bell_SAST April 9, 2018

Test Dependencies
• Really exist in practice (Zhang et al. found 96, Luo

et al. found 14), lead to flaky tests

• Existing techniques to detect:

• Combinatorially run tests, precise, but slow
[Zhang, et al ’14]

• Run tests once, collect data dependencies: fast,
imprecise [Bell, et al ’15]

@_jon_bell_SAST April 9, 2018

Combinatorial Dependency
Detection

Test 1 Test 2 Test 3 Test 4Test 1 Test 2 Test 4Test 3

@_jon_bell_SAST April 9, 2018

Combinatorial Dependency
Detection

Test 1 Test 2 Test 4 Test 3Test 1 Test 2 Test 3Test 4

@_jon_bell_SAST April 9, 2018

Combinatorial Dependency
Detection

Test 2 Test 1 Test 3 Test 4Test 2 Test 1 Test 4Test 3

@_jon_bell_SAST April 9, 2018

Combinatorial Dependency
Detection

Test 4 Test 2 Test 3 Test 1Test 4 Test 2 Test 1Test 3

@_jon_bell_SAST April 9, 2018

Combinatorial Dependency
Detection

Test 1 Test 3 Test 2 Test 4Test 1 Test 3 Test 4Test 2

@_jon_bell_SAST April 9, 2018

Data Dependencies

Test 1 Test 2 Test 3 Test 4Test 1 Test 2

Shared
File

Write, Value “A”

Test 4

Read
Write, Value “B”

Test 3

Read

Present Dependencies:
Test 1 must run before 2 and 3
Test 4 must run after 2 and 3

@_jon_bell_SAST April 9, 2018

Sample Data Dependencies
int x = readSharedData();
assertEquals(6,x);

getSharedLogger().logVerbose(“Log Ran”);

@_jon_bell_SAST April 9, 2018

Practical Test Order
Dependency Detection

• PraDeT’s two phase approach:

• 1: Gather data dependencies

• 2: Use dependency information to guide
systematic exploration of dependencies

@_jon_bell_SAST April 9, 2018

Dependency Refinement
Test 1

Test 2

Test 3

Reads data written by

Reads data written by

Data dependency
graph:

Execution sequence:

Currently checking 3 depending on 1 Test 1 Test 3Test 3 Test 1

Test 3

Data dependency
graph:

Currently checking 2 depending on 1 Test 1 Test 2Test 2 Test 1

At end of refinement, only
true test order dependencies

remain

Reads data written by

Test 1

Test 2

Confirmed dependency

@_jon_bell_SAST April 9, 2018

Evaluation

• How many test dependencies does PraDeT detect
in comparison to prior approaches?

• How long does PraDeT take to run?

• When should developers run PraDeT?

@_jon_bell_SAST April 9, 2018

PraDeT: Evaluation
photoplatform-sdf

DiskLruCache
indextank-engine

Bateman
dspot

webbit
stream-lib

http-request
okio

togglz
Bukkit

jackson-core
jsoup
dynjs

jfreechart
0 7.5 15 22.5 30

PraDeT Reverse
Isolate Exhaustive 2-way

Tests

PraDeT reliably finds test order dependencies

@_jon_bell_SAST April 9, 2018

Evaluation: Performance
photoplatform-sdf

DiskLruCache
indextank-engine

Bateman
dspot

webbit
stream-lib

http-request
okio

togglz
Bukkit

jackson-core
jsoup
dynjs

jfreechart
0 35,000 70,000 105,000 140,000

PraDeT Reverse
Isolate Exhaustive 2-way

Exhaustive:
>2 days

Seconds

@_jon_bell_SAST April 9, 2018

Flaky Tests
• What about tests that are flaky for

other reasons? Do we still need to
rerun them?

• What happened to accelerating
testing?

• Now tests need to be run three
times!

• Can we identify with certainty that a
test is a false alarm without re-
running?

Test 3

Test 3

Test 3

Test 3

Test 3

Test 3

Test 3Test 3 Test 3

“Test is OK!”

“Test failed!”

“Test outcome is
unknown!”

DeFlaker: Automatically
Detecting Flaky Tests

Jonathan Bell, Owolabi Legunsen, Michael Hilton,
Lamyaa Eloussi, Tifany Yung and Darko Marinov

George Mason University, University of Illinois at Urbana-Champaign
and Carnegie Mellon University

[To appear at ICSE 2018 in Gothenburg, May 31, 2018]

Fork me on Github

@_jon_bell_SAST April 9, 2018

Flaky Tests
• Our key insight: there is lightweight information we

can track while a test runs

• “Did this test run any code that changed?”

• Tracking coverage can be slow though! (40-50%
overhead!)

• …and we want to make things faster

@_jon_bell_SAST April 9, 2018

DeFlaker’s Differential
Coverage

DeFlaker tracks differential coverage — only tracking
code that changed since the last execution of the tool

List of likely
flaky tests

Previous test
results

Changed lines
executed by

each test

Lines to
monitor at

runtime

Old version
of codebase

New version
of codebase

@_jon_bell_SAST April 9, 2018

Differential Coverage

public class SuperOld {
 public void magic() {
 }
}
public class SuperNew extends SuperOld {
 public void magic() {
 assert(false); // causes test to fail
 }
}

public class App extends SuperOld {
}
public class TestApp {
 @Test public void testApp() {
 new App().magic();
 }
}

SuperOld SuperNew {

Now calls SuperNew.magic!

Just syntactic diff (e.g. from git) is insufficient to notice
coverage of all kinds of changes!

@_jon_bell_SAST April 9, 2018

DeFlaker
• Tracks line coverage of all changed statements (in

both tests and SUT)

• Identifies non-statement changes in classes by
parsing them, tracks with class-level coverage

• Detects flaky test failures “just-in-time” when they
fail

• Implemented as a maven extension (3-line addition
to pom.xml)

@_jon_bell_SAST April 9, 2018

Evaluation

• What is the performance overhead of running
DeFlaker?

• How many flaky tests does DeFlaker find in
comparison to rerunning failed tests?

@_jon_bell_SAST April 9, 2018

DeFlaker is Fast
achilles
ambari

assertj-core
checkstyle

commons-exec
dropwizard

hector
httpcore

jackrabbit-oak
killbill
ninja

spring-boot
tachyon

togglz
undertow

wro4j
zxing

0% 30% 60% 90% 120%
Jacoco DeFlaker

Evaluation on 17 open source Java projects: average 5% overhead

@_jon_bell_SAST April 9, 2018

DeFlaker Finds Flaky Tests
N

um
be

r o
f F

la
ky

 T
es

ts
 C

on
fir

m
ed

0

1500

3000

4500

6000

Number of Reruns

0 1 2 3 4 5

DeFlaker (NO reruns needed!)
Surefire + Fork

Surefire + Fork + Reboot
Surefire

Flaky Detection Strategy:

@_jon_bell_SAST April 9, 2018

DeFlaker Findings
• HOW you re-run flaky tests matters much more than how many

times you rerun them

• DeFlaker is extremely low overhead and can immediately
identify flaky tests

• Also deployed shadowing live executions on TravisCI, found
87 new flaky tests and reported to developers, many now fixed

• Differential coverage may have many other useful applications
as well

• Try it out! http://deflaker.org/

http://deflaker.org/

@_jon_bell_SAST April 9, 2018

Further Reading on Flaky
Tests

DeFlaker project site (ICSE 2018)
Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung and Darko
Marinov
Includes a preprint of the paper and information on the tool

Measuring the cost of regression testing in practice: a study of Java projects using continuous
integration (FSE 2017)
Adriaan Labuschagne, Laura Inozemtseva and Reid Holmes
A study of test suite executions on TravisCI that investigated the number of flaky test failures.

Flaky Tests at Google and How We Mitigate Them (Google Testing Blog, 2016)
John Micco
A summary of Flaky tests at Google and (as of 2016) the strategies used to manage them.

An Empirical Analysis of Flaky Tests (FSE 2014)
Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov
A study of the various factors that might cause tests to behave erratically, and what developers
do about them.

Chromium Project's Flaky Test Dashboard
A description of how the Chromium and WebKit teams triage and manage their flaky test failures.

http://www.deflaker.org
https://www.cs.ubc.ca/~rtholmes/papers/fse_2017_labuschange.pdf
https://www.cs.ubc.ca/~rtholmes/papers/fse_2017_labuschange.pdf
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
http://mir.cs.illinois.edu/marinov/publications/LuoETAL14FlakyTestsAnalysis.pdf
http://www.chromium.org/developers/testing/flakiness-dashboard

Detecting and
Debugging Flaky

Tests
Jonathan Bell

bellj@gmu.edu
http://jonbell.net/

@_jon_bell_

Fork me on Github

